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Sulfine1 

Sir: 

While a wide variety of substituted sulfines are known 
and are generally described as stable substances,2 the par­
ent compound, CH2SO, has thus far eluded synthesis.2a-3 

We now wish to report the facile generation of sulfine (thio-
formaldehyde S-oxide) by flash vacuum pyrolysis (FVP) of 
a number of readily available precursors. We also report 
herein the structure of this intriguing molecule as deter­
mined by microwave spectroscopy. 

In view of the demonstrated generation of other elusive 
"heteroolefinic" species by pyrolysis or photolysis of various 
four-membered rings,4 heterocyclobutanes 1 and 2 seemed 
to be likely sulfine precursors. Indeed, initial study of the 
FVP of thietane 5-oxide ( I ) 5 and 1,3-dithietane 1-oxide 
(2)6 (utilizing a pyrolysis system7 connected directly to the 
source of a mass spectrometer) suggested that both com­
pounds decomposed cleanly to sulfine in the gas phase be­
ginning at temperatures of ca. 600° and 300°, respectively. 
Definitive evidence for the formation of sulfine from 1 and 
2 under FVP conditions was obtained by following the de­
composition of 1 and 2 by microwave spectroscopy. Thus, 
when 2 at its vapor pressure of 25/^ was evaporated through 
a pyrolysis tube into a microwave absorption cell, genera­
tion of sulfine was detected first at a pyrolysis temperature 
of 300 0 C and was complete above 500° at which tempera­
ture the spectrum of 26 had been replaced by the spectra of 
thioformaldehyde8 and sulfine. 

D D 
1 — s I—s 

1 2 

A number of other possible precursors of sulfine were ex­
amined using FVP-mass spectrometry and FVP-microwave 
spectroscopy techniques. Pyrolysis of 1,3,5-trithiane has 
been shown to generate thioformaldehyde.8 We find that 
sulfine is produced, albeit inefficiently, on FVP of 1,3,5-tri­
thiane 1-oxide.9 The pyrolysis of Me2SO is suggested to in­
volve a chain decomposition with sulfine as one intermedi­
ate (eq 1-3).10 

CH1S(O)CH3 - ^ - CH3SO • + CH3 • (1) 

CH3S(O)CH3 + CH3- — • CH4 + CH3S(O)CH, • (2) 

CH3S(O)CH2 • —>- CH3- + CH2SO (3) 
3 

In our hands FVP of Me2SO at 650° did in fact generate 
sulfine, though not as efficiently as did FVP of 2. Since 
Gollnick11 has postulated that radical 3, when generated by 
photolysis of neat Me2SO, undergoes an alternative mode 
of decomposition than that indicated by eq 3, namely, rear-

O 
/ \ 

CH3S(O)CH2 • —«- CH3S—CH2 —* CH3S • + CH2O (4) 

rangement followed by fragmentation (eq 4), it seemed de­
sirable to provide additional support for the thermal radical 
fragmentation process of eq 3. Iodomethylmethyl sulfoxide 
(4)12 appeared to be a suitable precursor to radical 3. FVP 
of 4 at 350° did indeed generate sulfine together with meth­
yl iodide (both rather inefficiently), perhaps via the se­
quence of reactions indicated in eq 5-7. 

CH1S(O)CH2I (4) - ^* CH3S(O)CH2- + I • (5) 

CH1S(O)CH2 • — • CH2SO + CH3 • (6) 

CH3S(O)CH2I + CH3 • — CH3S(O)CH2 • + CH3I (7) 

Base induced dehydrochlorination of alkane- or arylalka-
nesulfinyl chlorides has been widely used to generate substi­
tuted sulfines,2a'c,d'g although the reaction reportedly fails 
with methanesulfinyl chloride.2a'3 We find that FVP of 
methanesulfinyl chloride at 600° affords HCl and sulfine. 
In examining FVP routes to sulfine homologues, we find 
that FVP of ethanesulfinyl chloride and 2-propanesulfinyl 
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chloride affords HCl, ethylene or propene (respectively) 
and SO2 and S2O (presumably derived from decomposition 
of SO1 3), perhaps via a Cope-elimination (eq 8). 

CH, > V 
" \ 

0 

CHR-^SCl 

RCH=CH2 + [HOSCl] HCl + SO (8) 

We have, however, succeeded in generating a sulfine homo-
logue, thioacetone S- oxide,2 by a cycloreversion route, 
namely, FVP of 2,2,4,4-tetramethyl-l,3-dithietane 1-
oxide14 (eq 9). 

x!x FVP 
(CH3)2C=S + (CHs)2C=S=O (9) 

O 

Microwave study of the pyrolysis products of 1,3-dithie-
tane-^2 1-oxide, -di, 1-oxide, and -dt, 1-oxide-18O,6 Me2SO-
d(, and - 1 8O 1 6 as well as the normal species led to the as­
signment of seven isotopic modifications of sulfine (rfj-syn, 
di-anti, rf2,

180, 3 4S, 13C, and d2
 3 4S; 34S and 13C deter­

mined in natural abundance). These and the normal species 
assignment result in the following "substitution structure" 
for sulfine (labeled as in 5):17 C-H 2 = 1.085 (0.002) A, 
C - H , = 1.077 (0.002) A, C-S = 1.610 (0.004) A, S-O = 
1.469 (0.004) A, ZH1CH2 = 121.86 (0.04)°, ZH2CS = 
122.51 (0.08)°, ZH1CS = 115.63 (0.10)°, and ZCSO = 
114.72 (0.04)° (the uncertainty, estimated as twice the 
standard deviation, is given in parentheses).18 By way of 
comparison the geometry of thioformaldehyde is C-H = 
1.093 A, C-S =1.611 A, and Z H C H = 116.87°.8 Sulfine is 
planar with a dipole moment of 2.994 D oriented 25.50° 
relative to the S-O bond as shown in 5 (the indicated polar­
ity is assumed).20 The gas-phase infrared spectrum of sul­
fine exhibits two strong vibration-rotation bands with 
prominent Q-branches centered at 1170 and 760 cm - 1 . The 
former frequency is characteristic of the C = S = O 
group.2g-21 

H: 

H. 

C = S 

O 

The decomposition of sulfine in the gas phase could be 
conveniently studied by following the disappearance of the 
sulfine absorption lines in a closed microwave cell. In a cell 
free of polymeric decomposition products, sulfine at a pres­
sure of 30 ix decayed linearly with a 30-min lifetime. After 
the cell had been used for several weeks, sulfine's decompo­
sition was exponential in the 30-300 /u, pressure range, with 
a half-life of ca. 1 h (under the latter conditions, the life­
time of thioformaldehyde was found to be ca. 20 s22). The 
principal gaseous decomposition products were CH 2O and 
SO2. The reactions and mechanism of decomposition of sul­
fine are currently under investigation. 

It might be noted that since sulfine is the S- oxide of thio­
formaldehyde, which has been established as a constituent 
of the interstellar medium,23 sulfine itself might be of some 
astronomical significance. 
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Trimethylsilylpotassium. Deoxygenation of Epoxides 
with Inversion of Stereochemistry 

Sir: 

The reactions of silyl anions with appropriately substitut­
ed epoxides are potential stereospecific routes to dia-
stereomerically pure erythro and threo-/3-alkoxysilanes.' 
We report here that some mono-, di-, and trisubstituted ep-
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